The development of in vitro diagnostic (IVD) technologies has been rapid, spanning from genetic sequencing, SNP screening, point mutation gene diagnosis at the gene level, to the detection of various biomarkers at the protein level, circulating tumor cells (CTCs) and thin-layer liquid-based cytology (TCT) at the cellular level, and PET/CT at the tissue level. Overall, IVD is moving towards a direction that is simpler, faster, non-invasive, and more information-rich.
Internationally, IVD has played an increasingly important role in clinical medicine and related medical research fields due to its ability to rapidly and accurately diagnose diseases in the early stages. According to statistics, developed countries such as Europe, America, and Japan are the main markets for IVD consumption. With the popularization of IVD technology and the improvement of public healthcare services, IVD has rapidly expanded in emerging markets such as China and India, achieving relatively fast market growth.
In terms of specific market share of IVD products, POCT, microbiology, and immunology occupy a larger proportion. POCT is mainly used for blood glucose testing in developed countries such as Europe and America, due to dietary structure and systemic reasons, thus occupying a larger market share. Microbiology, immunology, and molecular biology also occupy a certain market share.
Ⅰ. The main applications of IVD technology in the future include:
1. Health Check-ups
Modern people pay more and more attention to their health, and many people have made annual physical check-ups a habit. In vitro diagnostic testing of blood, urine, feces, secretions, and other samples can achieve disease prevention and early detection.
2. Chronic Disease Management
The incidence of chronic diseases such as diabetes, hypertension, and chronic gastritis has been increasing worldwide. The incidence of other diseases such as hyperlipidemia and osteoporosis is also high. These chronic diseases require regular monitoring of blood sugar, blood pressure, blood lipids, Helicobacter pylori, and bone calcium. The use of IVD equipment, especially various wearable devices, can achieve real-time monitoring of blood sugar, blood pressure, heart rate, and other indicators.
3. Serious Illness Monitoring
After undergoing surgery or chemotherapy, many cancer patients can be monitored regularly by doctors using IVD technology to detect tumor markers, predict cancer metastasis, and guide drug use. For example, breast cancer patients need to undergo chest X-rays, bone scans, liver ultrasound, blood routine, and tumor-related antigen tests regularly after surgery. Researchers at the British Columbia Cancer Agency have found that breast cancer patients with high expression (positive) of genes in the brain face three times or even higher risk of cancer cell brain metastasis than those with low expression (negative) through IVD technology. This allows doctors to provide targeted treatment for high-risk patients and prevent cancer metastasis.
In Vitro Diagnostic Design: What are LDT and IVD?April 4, 2023Medical professionals usually rely on various tools to diagnose conditions and guide treatment decisions. The most commonly used is in vitro diagnostics (IVD) technology. Patients may receive or decli...view
Classification of Microarray ChipsJanuary 20, 2023A biochip or microarray chip is a microscope slide for the laboratory, usually made of silicon chip, glass, nylon film. It is usually a 2D array (sometimes 3D) with thousands of microwells at defined ...view
Introduction to Microarray Chip Analysis TechnologyApril 10, 2024Microarray chip analysis technology, as an important innovation in the field of modern biotechnology, plays an increasingly important role in the fields of genomics, proteomics, and disease diagnosis ...view
Why Do You Need Chromosomal Microarray Analysis?April 4, 2023Chromosomes are genetic material and the carriers of genes. The human body has 23 pairs of chromosomes, with 22 pairs being common to both sexes and called autosomes. The other pair determines sex and...view
The Impact of DNA Genome Sequencing on Cancer Research and TreatmentJuly 18, 2024Cancer remains one of the most formidable challenges in medical science. As we continually seek innovative solutions to understand and combat this complex disease, DNA genome sequencing has proven to ...view